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Incremental Diffraction Coefficients for the Truncated Half-Plane
and the Calculation of the Bistatic Radar Cross Section of the Disk

1. INTRODUCTION

Exact expressions for Incremental diffraction coefficients (IDC's), also called equivalent edge

currents, have been derived for the perfectly conducting wedge by integrating the wedge currents over

an increment of the wedge 1.2 and more recently, for any planar current surface or combination of
planar current surfaces by direct substitution of the two-dimensional (2-D) far fields of each planar

surface into convenient general expressionis. 3 ,4 .5 Incremental diffraction coefficients obtained for the

total current, the physical optics current, or the nonuniform current, that is, the difference between

the total and physical optics currents, are referred to as the GTD (geometrical theory of diffraction), PO

(Received for Publication 14 November 1989)

1. Mitzner, K.M. (1974) Incremental Length Diffraction Coefficients, Tech. Rep. No. AFAL-TR-73-
296, (available from National Technical Information Service, Springfield, VA 22161.
AD918861).

2 Michaell, A. (1984) Equivalent edge currents for arbitrary aspects of observation, IEEE Trans.
Antennas Propagat. AP-32:252-258, (correction, (1985) AP-33:227).

3. Shore, R.A. and YaghJian, A.D. (1988) Incremental diffraction coefficients for planar surfaces,
IEEE Trans. Antennas Propagat. 36:55-70, (correction, (1989) AP-37:1342), also, Incremental
Diffraction Coefficients for Planar Surfac es, Part I: Theory, RADC-TR-87-35, ADA208595.

4. Shore, R.A. and YaghJian, A.D. (1987 incremental Diffraction Coefficients for Planar Surfaces,
Part II: Calculation of Nonuniform Current Correction to PO Reflector Antenna Patterns,
RADC-TR-87-213, ADA208596.

5. Shore, R.A. and YaghJian. A.) (1988) incremental Dlrraction Coefficients for Planar Surfaces,
Part I: Pattern Effects of Narrow Cracks in the Surface of a Paraboloid Antenna, RADC-TR-
88-119, ADA207796.
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(physical optics) and PTD (physical theory of diffraction) incremental diffraction coefficients,
respectively. 3 For the perfectly conducting wedge, Mitznerl concentrated on the PTD incremental

diffraction coefficients, Michaeli derived the GTD coefficients initially2 and later the PTD

coefficients 6 , and Knott 7 determined the PO incremental diffraction coefficients from the difference

between the GTD and PTD coefficients.

Assume incremental diffraction coefficients have been determineu for a canonical 2-D scatterer

of finite cross section. The integration of Lhes, finite incemental diffraction coefficients (multiplied

by the incident fie1d,) along the bo.anding curves of three-dimens:onal (3-D) scatterers produces a
uniform high-frequency solution even at. .1 near caustics where conventional stationary-pinase

high-frequency techniques fail. As an example, Shore and Yaghjian obtained uniform IDC's for the

narrow (electrically small) strip and slit and used them to calculate the effect of cracks between the

panels of reflector antennas on tlz antennas' co-polarized and cross-polarized far fields 35

For canonical problems of rifnite cross section, like the wedge, the incremental diffracticn

coefficients contain the same discontinuities and singularities as the far-field of the canonical 2-D
problems Spccifically, the GTD incremental diffraction coefficients of the wedge contain th.

discontinuities in the diffracted H-wave fields at the face angles of the wedge, the singularities in the
E- and H-wave far fields at a face angle of the wedge when an incident plane wave giazes that face from

the outside, and the singularities in the total diffracted far fields at the shadow and reflection

boundaries Integrating the PO current separately and using PTD incremental diffraction coefficients,
instead of GTD incremental coefficients, eliminates the singulait~es at the shadow and reflection

boundaries, but retains the face-angle discontinuities and singularities. 6

Figure 1 shows the specularly scattcred fields of a perfectly conducting infinitely thin disk

computed by rumerically integraf ing the JTD inciemental diffraction coefficients for the infinite
half-plane arcund the ri-n of the disk, and adding the result to the PO fields. The comparison in

Figure I of the P0 plus ID" fields with the PO fields alone, and with the exact scattered fields obtained
from the eigenfunction solution to the disk, shows that the inlegrated ~fID incremental coefficients of

the half-plane become divergent at grazing. (Interestingly, for spectular scattering from the disk, the

PO and integrated PTD-IDC far fields are identical for the two incidental plane-wave polarizations.)
Thus, Figure 1 Illustrates the limitations of infinite half-planc IDC's and motivates this report's

primary objective: to determine accurate high-frequency incremental diffraction coefficients for the
leading and trailing edges of the truncated half-plane in order to ellninai.e the singularities and

discontinuities in the diffraction coefficients of the infinite half-plane. Of course, the 2 -D truncated
half-plane, that is the strip, has an exact eigenfuncdon solution that could be used to find the 3-D

incremental coefficients by sub';tituting the exact solution into the general expressions of Reference 3.

However, the summation of eigenfunctions takes a considerable amount of computer time for

6. Michaeli, A. (1986) Elimination of infinities in equivalent edge currents, Part I: fringe current
:omponcnts, IEE "Iau. Adetaus Propagat. AP-34:912-918.

7. Knott, E.F. (1985) The relationship between Mitzner's ILDC and Michaeli's eqival-nt currents,
IEEE Trans. Antennas Propagat. AP-33:112-114.
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electrically large strips and the available computer codes encountered numerical difficulties

evaluating the required Mathieu functions when the strips became vider than about 5 wavelengths.

Moreover, the exact strip solution yields the incremental diffraction coefficients for rectangular

incremental strips only, rather than for general trapezoidal strips that are able to conform to the rim

of an arbitrarily shaped polygonal plate or disk. Thus, we found it desirable to determine an accurate,

uniform high-frequency solution to the perfectly conducting truncated half-plane with the leading

and trailing edges treated separately (though not necessarily independently) so that IDC's for

trapezoidal strips could be found.

Previous IDC work has also involved high-frequency solutions to the strip.8 9 , 1 0 Coleman et a18

combined the use of rectangular incremental strips that do not conform to the rim of the general 3-D

plates to which they are applied, with an early, relatively inaccurate, high-frequency 2-D strip

solution of Ufimtsev. I I Sikta et a19 also used nonconformal rectangular incremental strips and

obtained scattering in the plane of incidence only. Michaeli 1 0 used conformal incremental strips, but

evaluated the current integrals of the incremental strips asymptotically so that singularities at
grazing incidence arise. None of these previous strip solutions Included diffraction of the nonuniform

leading edge currents at the trailing edge of the strip. An essential feature of the high-frequency

solution derived in this report is that the diffraction at the trailing edge of the H-wave nonuniform

leading edge current, which becomes appreciable near grazing incidence, is taken into account even

when the leading and trailing edges of the incremental strip are not parallel.

The analysis begins by finding convenient expressions for two-dimensional fields radiated by

the truncated leading and trailing edge currents of a half-plane illuminated by a TM or TE plane wave.

These 2-D leading and trailing edge diffracted fields are then used to compute the high-frequency

bistatic radar cross section of an infinite strip. This high-frequency solution is then compared with

the exact elgenfunction solution for the strip.
Next, the 2-D diffracted fields of the truncated half-plane are inserted into the general

expressions of Reference 3 to obtain the PTD incremental diffraction coefficients for the leading and

trailing edges of the truncated half-plane. Finally, these PTD incremental diffraction coefficients are

applied to finding the approximate far fields scattered by a circular disk illuminated with a TM or TE
plane wave. These approximate high-frequency scattered fields are compared with the exact far fields

computed from the elgenfunction solution to the disk.

8. Coleman, J.R. (1973) Investigation of Radar Scattering by Simulated Aircraft Duct/Engine
Combinations, Air Force Avionics Laboratory, AFAL-TR-73-361.
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2. THE FAR FIELDS RADIATED BY TIIE TRUNCATED CURRENTS OF A
HALF-PLANE ILLUMINATED BY A PLANE WAVE

The general expressions In Reference 3 yield the 3-D incremental diffraction coefficients of a
planar, perfectly conducting 2-D canonical scatterer through direct substitution of the 2-D far fields of

this canonical scatterer. Thus we begin the derivation of IDC's for the truncated half-plane by
deriving the far fields radiated by the currents on a truncated half-plane, or more precisely the far
fields of the truncated currents of an infinite half-plane under plane-wave illumination. Figure 2
shows the truncated half-plane lying between x = 0 and x = s and stretching from -00 to 00 in the

Az-direction. The spherical angles ( ,0) of the observation direction r, and the spherical angles (%,0) of
the propagation direction k of the incident plane wave are also shown in Figure 2.

OBSERVATION OBSERVATION
Y DIRECTION Z ! DIRECTION

INCIDENT
L EDGE OF PLANE WAVE

INCIDENT HALF-PLANE
PLANE WAVE e

8
00

-p. eo

HALF-PLANE TRUNCATED /
AT X S

Figure 2. Geometry of the Truncated Half-Plane Illumini: .1 by a Plane Wave

The far fields radiated by a current R on the truncated half-plane are given by the integral 3

eikr ° . Ter/4S

jj{j:) r->Oo ik 0 x K(x,)eikx sln 0o cos0 dx' (la)
(81ckp sin 00) 1 2

E(f) - -Z 0 oo x H(F), r >00, (Ib)

A Awhere the unit vector ro in Eq. (1) is defined as the unit vector r evaluated at 4 and 0 = 1 - 0o, that is,
A A A
r. = p sin 00 _ cos 0o . The exp(-wt) time dependence has been suppressed and Zo is the plane-wave
Impedance of free space. For a normally incident plane wave (0o = 900), Eq. (1) reduces to
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& (kp + n/4) 

(

H(I) k (fkp) 1 / 2  kx (x,)e-ikx' COS 0 dx' (2a)
0

E(j) ~-Z 0 P x F(). P ->O. (2b)

The far-field expressions in Eq. (2) for normal Incidence are especially important because once they

are found, the far fields for an obliquely ncident TM plane wave are determined immediately by

substituting k sin 00 for k and multiplying by exp(-lkz cos 0o). The H0 (or EO) far-field for an obliquely

Incident TE plane wave Is also determined by this simple substitution and multiplication. However,

the I-t9 (or E.) far field, which occurs only at oblique incidence in the TE case, must be obtained by an

alternative procedure; for example, by Integrating the current in Eq. (1).3

2.1 The TM (Parallel Polarized) Fields: Normal Incidence

The total current on a perfectly electrically conducting infinite half-plane illuminated by a

normally incident (0o = 900) TM plane wave, given by

A
E = E exp [ikp cos (4 - 0o)] (3)

may be found from Eq. (8.14) of Bowman, Senior and Uslenghl 1 2 :

A A 2 4 oel/4=K = z-0oE sin "

S ik -, cos- e-i kxCOS F(2k cos2-LO (4)E(2) e2k 2 2iT 4o -kC X)] 4

where F is the Fresnel integral defined by

x

F(x)-- - dt . (5)

0

Substitute the total current K from Eq. (4) into the integral of Eq. (2), and make use of the following

infegrai of the Fresnei Integral derived In Appendix A,

x ia 
- 1 

- (Fola + lix)

f F(u)e (6) -~~u aadu e F~x)- Ia+ 111/2

12. Bowman, J.J., Senior, T.B.A., and Uslenghi, P.L.E. (1969) Electromagnetic and Acoustic
Scattering by Simple Shapes, Amsterdam: North-Holland.
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where F0(t) denotes F(t) when t > 0 and the complex conjugate of F(t) when t < 0, to obtain the TM far
fields of the total current for normal incidence

TM(P) pZo zE i (i[kp) 1/2 Cos )0 + Cos )

r 1l _cos ) F)(ksI I cos4)I1

-2 Cos -- c i eks(cos -+ cos )) F2k 2 (7a)

0: 4), 4)< 2nt

FIl - A 11t( ) _>. (7b)

(We retain the absolute value signs in 1 1 - cos because when the IDC's are found by substitution of
Eq. (7) Into the general expression of Reference 3, cos ) is replaced by a variable that may become
greater than one; see Section 3.)

Eqs. (7) give the far fields of the total current emanating from either a leading or trailing edge of
the truncated half-plane. To obtain the TM far fields of the truncated nonuniform current, simply
subtract the TM, PO far fields,

E I '~ ~ r M J ( ~ ~ ) A Ee ( k p + / 4 ) S i n 2 o o s -~ r 5 C 3 A C 30( a
M cos ) 0 + cos )

I10M)(IA P T A) 
-( (8b)

from Eq. (7) to get

4)oik p s in - ( - c s )

nfutrM)(-) A Eike 2i- NF2-(Cos 4)-FO(ksl 1-cos )Iz (rkp)1/ 2 cos 4)o + COS t/i1 - cos O - s

_ cos [,e-1 ks(cos 0o + cos ') F(2ks cos 2 L)

+ 42"eir/ a (1 -iks(cos¢°+c os))]) , (9a)

0<, o < 2n

j-. Autf)() A x E nu(tM)(i)/Z o , p->-o. (9b)
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Depending on whether the incident plane wave makes an angle 4, greater than or less than
90' (or less than or greater than 270'), Eq. (9) gives the far fields of the nonuniform half-plane current
of the leading or trailing edge, respectively, truncated at the trailing or leading edge, respectively. Of
course, in reality, there will exist multiple interactions between the leading and trailing edges
dominated by the nonuniform current from the leading edge diffracting at the trailing edge. However,
for the TM incident fields the nonuniform current decays as the inverse of the square root of the
distance from the edge, and thus Eq. (9) is a good approximation for the nonuniform far fields of the
trailing as well as the leading edges of electrically large strips (s > X).

2.2 The TM Fields: Oblique Incidence

As mentioned in Section 2, the far fields radiated by the total, PO, and nonuniform currents can
be determined for an obliquely incident TM plane wave essentially by replacing k with k sin 00 In the
far fields for normal incidence and multiplying by exp(-ikz cos 0o). In particular, Eqs. (7) generalize
for oblique incidence to

C0 2.e-i t/4  sin -
2

nuM)(F) r->oo _0 Ei C k c2Te0 ik Cos € o + Cos

/I - cos

Co oI[eik sin 00 (cos 00 + cos 0 F(2ks sin 0 os
c2 e 052

+ \Te' 4  - e- oks sin Oo(coso +cos (10a)

11 J

0: 0,0 < 2nt,

A A
where 0 8 is the unit vector 0 evaluated atO = ic - 00, and

elk(p sin 0o - z cos 00) ei 1 4 ik

Co= (87ckp sin 0o)1/2 (11)

In Section 3, the 2-D TM fields [Eqs. (10)] are substituted into Eqs. (23) and (24) of Reference 3 to obtain
LAC 30 i' InLI.t-Cii1tal UUIldLUUI1 Loelcldeatb for TM plane wave incidence on the leading and trailing
edges of the truncated half-plane.
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2.3 The TE (Perpendicular Polarized) Fields: Normal Incidence

The 2-D far fields of a perfectly conducting truncated half-plane for a normally incident (0o = 90')
TE plane wave, given by

A

_-1 = zHi exp[-ikp cos( - 4)1o (12)

begins, as in the TM case, with the total current on the infinite half-plane:

K-x= Hi sign(1 - 0o)2,2-e- / 4 ek coS oxF 2 k cos2  x (13)

which can be found from Eq. (8.31) of Bowman, Senior and Uslenghi. 12 The sign (n - 0o) function in

Eq. (13) is + 1 or -i for 0o less than or greater than rc, iespectively. Substituting K from Eq. (13) in.o
Eq. (2), and making use of Eq. (6) to perform the integration of the Fresnel Integral, yields the TE far

fields of the total current for normal incidence

inCkp sin 0

zH i sgnn - o0 kp) 1/2 cos o + cos 0

[-- ks (cos 0 + cos 0) F (2ks cos 2  FO(ks{ 1 -Cos 0 (14a)Sl2 -1 cos j-

0: < ,o < 27r,

E(P) ~ -Z 0 P x (p), p->- (14b)

(Again, we retain the absolute value signs in 11 - cos 01 because when the IDC's are found by

substitution of Eq. (14) Into thc general expressions of Reference 3, cos 4 Is replaced by a variable that

may become greater than one; see Section 3 below.)
The TE far fields of the truncated nonuniform current are determined by subtracting the TE, PO

far fields,

PO(Ij) A eikp+ ln/4 sin 1
H ) -zHisgn( - 0) (2itk p) 1 12 cos 0 + cos (15a)

[1-e -  ks(cos ¢ ° + cos

E (p) ~ -Z o0  x H (p), p->oo (15b)

from Eq. (04) to get
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_ nuE) A eikP sin (H' zHj sign(ir - (Do) in kp) /2 Cos (Do + Cos (

•e - iks (cos 0 ° + cQs 0) 2kSCOS2 !O I FO(ks] Icos()(1a
2) 1 - cos 2

+-e i2 - "  ks (cos 00 + cos 0) 0 -< q, (Do <  27,

_ nuT) nurE
E -Z() . p->o. (I6b)

Eqs (16) present a good high frequency approximation to the fields radiated by truncated TE
nonuniform current emanating from the leading edge for all angles of incidence. However, unlike the

analogous TM Eqs. (9), Eqs. (16) need t) be modified for the trailing edge, when the incident angle is
near gra ing (Do = -0), to take into account the nonuniform current that emanates from the leading edge

and diffracts at the trailing edge. Fortunately, this modification required for the trailing edge under

TE illumination is accomplished through a simple multiplicative factor that will be derived in

Section 2.5.

2.4 The TE Fields: Oblique Incidence

As mentioned in Section 2, the Ho or E, far fields radiated by the nonuniform current can be

determined for an obliquely incident TE plane wave essentially by replacing k with k sin 00 in the far

fields for normal incidence and multiplying by exp(-ikz cos 0o). In particular, Eqs. (14) and (16)

generalize respectively for oblique incidence to
o.--e-l 11/4

_7t_ '(0)_2_ sin 0
SO') 0 0 00H i sign(i -O) lk cos 4Do + cos (

[e-ks sn' 0(co o+ cos F( 2 ks sin 0 o cos 2

4 cs 1
1- co- /2 FO(ks sin 00 1- cos cpl) j (17a)

0: _ ,(o < 2r,

0 500 < 71,

E (i) j r - ~o H o A. A r -> (17 )

and
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- nuCI ) A r A "^H_ 2Co sin

10 (F) 0 0 00- 1 k cos o + cos

[r-in/4 [e s i 00 (cos 00 + cos 0 F(2ks sin 00 COS2  )

e-~ coso

1 -- o F°(ks sin 11 - cos )(I8a)

-e-iks sin 0o(cos~o +cos 4)]b

0: _< ,¢o < 21c,

, (r) --ZrX ( 00 , r->oo (18b)

For the TE case, there may also exist H, and E0 far fields when the plane wave is obliquely
incident. These H. and E0 far fields can be found by integrating the TE current that exists on the half-
plane for oblique Incidence. In particular, the nonuniform far fields, H.nulE) or EnuTE), can be found

for the truncated half-plane by subtracting the PO far fields, H, or E0
r ° '5E , of the truncated half-

plane from the TE far fields, H,0 or Es0
. , obtained by integrating the total current over the

truncated half-plane. Before we do these integrations to determine the He or E0 fields, however, let us

address an objection that may arise at this point in the analysis.
If the total TE current that we are integrating were the exact total current of the 2-D perfectly

conducting strip, then the basic theory of 2-D scattering from perfect conductors (see Chapter 1 of
Reference 12), tells us that these total currents, when Integrated will not produce an He and E0
component in the far fields. Of couise, we are not integrating the total currents of the strip, but the
truncated currents of the infinite half-plane. Thus, we canzot expect the H. or E0 far fields to be zero.

Still, one could argue that when we eventually apply these far fields to both the leading and trailing

edges of incremental strips, the combined truncated currents from both the leading and trailing edges

should closely approximate the exact total currents of the strip; and thus, we should ignore the He and
E0 components of T" far fields at all points in the analysis. This argument is valid provided the

l('dt, n higad trailing edges of the incr enicail strip drc parallel. Only for tihee iectangular sti lps is the

incremental strip part of an infinite 2-D strip for which the above-mentioned theory in Chapter 1 of

Reference 12 holds. For trapezoidal incremental strips, that is, strips with nonparallel leading and

trailing edges, we must Include, in general, the TE I-I and E0 far fields radiated by the truncated half-

plane currents for oblique incidence.

To obtain the total scattered TE H, or E0 far fields it suffices to obtain the z-component of the

total current on the half-plane since then Eqs. (9b) and (14b) of Reference 3 combined with Eq. (17a)

already derived for H. 0 yield HW. Since Kz on the surfaces of the half-plane is equal to H, within a

sign, we seek an expression for Hx on the half-plane surfaces.
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For the norma;iy incident TE plane wave given bv Eq. (11). Eq. (8.28) of Reference 12 gives the

total '1z everwhere in space. A general procedore for generating the solution for oblique incidence is

given in Reference 12. For H-polarization lut V be obtained from the normal incidence (two-

dimensional; solution by substituling h -> k slit Oo and multiplying by exp(-ikz cos 0o). Then Eq. (1.6)

of Reference 12 adapted to the form of the obliquely incident plane wave

A _ i 0A)

Hinc = -H (cos o cos Co x. sin (o cos 00 y sin 00 z)

exp[-ik (x cos 00sin 00 + y sin 4o sin 0 0 + z cos 00)] (19)

gives the total magnetic field

i cos 00 aV A OV A
Sk sin 00 + y) + sin 0ovz (20)

with, from Eq. (8.28) of Reference 12,

V = H1 e1i n 4 e-ikz cos 00 exp Ik sin 0 p Cos ( O) [ o~ -42k sin o pcos'~4~)

+ exp -lk sin 0 pCos (0 + O)]Y[42k -sinOop cos -  + 0o)} (21)

and

(0)= f e i t2 dt. (22)
Ci)

Then Hx on the surfaces of the half-plane is given by

I cos 0 o ,3V
Hx= - sin (0 x 23)

with

2H e-k cos O0 exp(-ik sin O0 cos ox) Y" T2k sin Oox Cos (24)

where the - or + sign applics on the top and bottom half-plane faces respectively. The current on the
top and bottom faces of the half-plane is then given by

K(bt) = Hxz
In/4 -iza~s_. e 01 sin 00x

Cos .c C0S 0 V+ Hi e / e -  '_ " 2 0/2 COS 0, COS '/2 (25)

The total current is obtained by adding the currents on the two faces:
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K. = slgn(7r - 4)0)H 2"/cos 00 e - Ikz cos 00

[ 7 &ik sin 0 ,oo cos 0o F(k sin 0 os 2 )

+ e n4 o eik ] 0 (26)
4rk sin 00 I 2 17 2

with F(x) given by Eq. (5). Integrating Ktt over the half-plane from 0 to s and making use of Eq. (6)
yields [see Eq. (9b), Reference 31.

S

AOz = J Kzt(t (x) e - kx sin o0 cos € dx
0

= signir - 4O)}Ii 2 "e r 4  Cos 00 1
k sin 00 cos 00 + cos 6

[cos 0o e iks sin o+ 0,s0) F(2ks sin 0 cos2 o)

Co cOST ICos4 (.12)
4- o 4)Ico F0  kssin00 1-Cos (27)

From Eq. (14b) of Reference 3 we then obtain

Il .. = - sin 00 (CoAo. + cot 00 cot 4) I-,1) (28)

from which, with Eq. (17a),

Aii (it) ) r->-o sign(7z - 0)1-11 2,2"e-I i/4 LO cos 00

ek sin O0 {cis 0°+ 0) F (2k sin 00 cos2 Q), (29a)

0:5), 4o< 2r, 0 o00 < n,

f.A A 'F AE"1 ' (r) 017- -ro If (F) r->w . (29b)

The corresponding PO fields are readily obtained from the expressions for H T'° for the faces of
the infinite wedge given on pp. 32-33 of the technical report version of Refeience 3 by multiplying by

the factor {I exP[- ks sin 00 (cos 4)o + cos

P~iC-1 Ar -ks sin Oo(o G+ oos lI I ( )r- sign(n - 0))IT C cosO0 I1 - - I.
LJ

0 < 0,o < 27r, 0 < 00 < it, (30a)
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POTE) A A PO(TE) A
E 0  (F) 0- - r 0

x H0  (F) . r->-,, (30b)

and hence, subtracting Eq. (30) from Eq. (29),

nurlE) A 2C°I ( {F) _ g( - )H- cos 00

f I4te n/ e'1- i kssn00(as0 F (2ks sin 00 cos2 2)(31a)

+ - 0'ks sin O ks + co OS

0 p,2 , 2, 0 00 <n,

nufrE)A A nutE) AE0  On 0- -rox H. (F) . r->- . (31b)

2.5 Modification of the TE Fields for the Trailing Edge

Consider the truncated half-plane In Figure 2 with a TE plane wave incident near o= 1800. The
nonuniform current, defined as the difference between the total and PO currents, emanating from the
leading edge decays very slowly (unlike in the TM case) toward the trailing edge. This appreciable
nonuniform TE current impinging upon the trailing edge produces diffracted fields from the trailing
edge that modify the diffracted TE fields, Eq. (18), applied to the trailing edge. We can determine this
modification approximately by first deriving from Eqs. (20) and (21) that the total TE current for
oblique incidence on the half-plane is given, for all angles of incidence, by

-sign(t - o)2y x 00 Hi eik(xstnoos 00+ zas 00) 4-e F(2kx sin Ocos2

'Io

2S Hie 00- - eik(xsn0ozm ) (32a)+ 2z H117c/4 fkx sin O0

A Awhere 00 Is the unit vector 0 at 0 = 00. For 2kx sin 00 >> 1. the second term in Eq. (32a) Is small
compared to the first term. and Eq. (32a) can be written approximately as

- X A eHik(x sin 00 xsoo+ z ws 0o)K=-sign(n -00b)2y x oHI

[ 2-ir / 4 F(2kx sin 0 o cos2  
, 2kx sin 00> > 1 . (32b)
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"the TE Il-field corresponding to this current, Eq. (32b), impinging on the trailing edge (x = s) of the

truncated half-plane is

F =,p 00 oHi e-k(x sin 0o c g oz 0
o  2,/ e-in/4 F(2kx sin 0oCOS2  (33)

2kxsin 00 > > 1.

Now, the obliquely incident TE plane-wave field alone along the half-plane is given by

H -00 HA e-Ik(x sin 0o cos 0 + z cos 0o)

Comparing Eqs. (33) and (34), we see that the impinging field, that is the effective incident field on the

trailing edge (x = s), is approximately the actual incident field multiplied by the factor

22e-'n4 F(2ks sin 0L cos 2 0(35)

where the superscripts L on 01 and Fo In (35) emphasize that they are the 00 and 0o angles defined with

respect to the leading edge -- even though (35) is used as a factor multiplying Eqs. (18) and (31) when and

only whcn Eqs. (18) and (31) are applied to the trailing edge. If the leading edge makes an angle V with

the incremental strip, so that s is given in terms of the length L of the incremental strip by

s = L sin M', (36)

(35) becomes

"[e-ln/4 F(2kL sin Y sin 0L cos 2  ( (37)

If in addition v Is taken as the direction of propagation in the half-plane of the PO current or.

equivalently, of the total and nonuniform current near grazing ( L = 180') then sin v equals

-sin 04 4 1 - sin2 0L sin2 
O

L and (37) becomes

L
(-2kL sin20L cos2  Jcos 0L

n2
2  J (38)41q - sln2 01 sin2 0oL

In summary, then, for incremental strips chosen along the direction of propagation in the half-

plane of thc P0 current, the factor (38) should multiply the fields in Eq. (18) when Eq. (18) is applied to

the trailing edge of the truncated half-plane.

Of course, a more accurate method of accounting for the diffraction at the trailing edge of the

nonuniform TE current emanating from the leading edge of an arbitrary scatterer, would be to first

determine the path of the diffracted ray from the leading edge to the trailing edge, and then calculate

the diffraction at the trailing edge of this leading-edge ray, We did not use this more accurate
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technique in the present report, not only because it would require an extra calculation, but because the
TE nonuniform current decays fairly rapidly away from the leading edge except near grazing where the

diffracted ray path nearly coincides with the direction of propagation of the PO current in the

corresponding half-plane [and thus (38) applies].
In general, Appendix C shows that whenever the significant nonuniform current of integration

for a given observation point extends a distance from the edge larger than a small fraction (say 1/4) of

the distance to the focal point of the diffracted rays, the incremental strips of nonuniform current will

not closely approximate the actual nonuniform current, and thus the fields computed from the
incremental diffraction coefficients at the given observation point may contain significant error.

(For example, see the discussion of Figures 22 - 25 in Section 4.4.) Near grazing, the focal length

approaches infinity and the incremental strips of nonuniform current accurately approximate the

actual nonuniform current across the whole distance from leading to trailing edges.

2.6 Calculations of the Two-Dimensional Bistatic Radar Cross Section of a Strip

In this section we show the results of calculations made of the two-dimensional bistatic cross

section of an infinitely long strip. The bistatic cross section, a(), per unit length, for normal
incidence (that is, the direction vector of the incident plane wave normal to the edges of the strip) of an

infinitely long strip is defined by Eq. (1.34) of Reference 12:

Iv laM =P - > °i 21p V1 (39)

where Vsi = ESJ if the electric field is parallel to the z-axis (TM) and Vs, f = Hzsi if the magnetic field

is parallel to the z-axis (TE), with the superscripts s,i denoting the scattered and incident field,
respectively. In our results we normalize a by dividing by the wavelength X.

In Figures 3a and b we compare the TM and TE back scatter cross sections obtained using the

approximations of Sections 2.1, 2.3, and 2.5, with the corresponding bistatic cross sections obtained
using a computer program to calculate the exact two-dimensional fields scattered from an infinite

strip. 13 The width of the strip is s/X = 30/2n = 4.77. In these plots 0 is the angle between the direction

vector of the incident plane wave (or the observation direction) and the normal to the plane of the

strip. For calculating the contribution of the leading edge of the strip from Eq. (7a) or Eq. (14a),

0 = 0 = i/2 + 0, while for calculating the contribution of the trailing edge from Eq. (7a) or Eq. (14a)
with Eq. (35), 0o = 4 = it/2 - 0, 0 _< 0:< n/2. The cross sections are, of course, symmetrical with respect to

0 = n/2. The total field scattered from the strip is obtained by summing the contributions of the
leading and trailing edges. Note that the direction of z in Eqs. (7a) and (14a) must be reversed for the

trailing edge from what it is for the leading edge of the strip. As can be seen from Figures 3a and 3b, the

exact back scatter cross sections (-) are virtually indistinguishable from the approximate back

scatter cross sections (-
In Figures 4a and b we compare the approximate TM and TE specular (or, equivalently, forward)

13. Dominek, A.K. (1988) Personal Communication, Ohio State University ElectroScience
Laboratory.
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scatter cross sections with the corresponding exact cross sections. As with the back scatter plots, here

0 Is the angle between the direction vector of the incident plane wave (or the observation direction) and

the normal to the plane of the strip, so that %O = t/2 + 0 and 0 = n/2 - 0 for obtaining the contribution of

the leading edge of the strip, while 0o = i/2 - 0 and = 2 + 0 for the trailing edge. Again, there is

hardly any difference between the exact and the approximate curves.

In Figures 5a and b, we compare the approximate TM and TE "side scatter' cross sections with the

corresponding exact cross sections. By "side scatter", we mean that the observation direction and the

incidence direction are at right angles to each other. In these plots 0 is the angle between the direction

vector of the incident plane wave and the normal to the plane of the strip, so that 00 = 7t/2 + 0 and

4- = i fo, ca_culatirn the contribution of the strin lesding edge E.., q £. . (7aj or Eq. (14a), while

4o = t/2 - 0, and 0 = n - 01 for calculating the contribution of the strip trailing edge from Eq. (7a) or

from Eqs. (14a) and (35). There is again very close agreement between the exact and the approximate

side scatter cross section curves.

In Figures 6a, b, and c we compare respectively the TE back scatter, specular (forward) scatter,

and side scatter cross section plots obtained without the use of the trailing edge correction factor

Eq (35). with the corresponding exact cross section plots. Comparing these figures with Figures 3b, 4b,

and 5b, respectively, we see that the trailing edge correction factor plays a significant role in

improving the accuracy of the approximation In the back scatter and side scatter cases.

It is of considerable interest to see the limitations of the PO approximation for the strip bistatic

cross sections. In Figures 7a and b, 8a and b, and 9a and b, we compare the TM and TE back scatter,
specular scatter, and side scatter cross section curves obtained with the PO approximation (-
with the exact curves (-). It is apparent that the PO approximation is, in general, of rather

limited value in giving an accurate picture of the scattering cross section patterns apart from the

portion of the patterns in the vicinity of specular scatter.
Figures 10a and b compare the E- and H-wave back scatter cross sections of the strip computed

from the high-frequency solution of Michaeli's 1984 Radio Science paper 14 , with the exact E- and
H-wave cross sections. Agreement between the exact E-wave solution and Michaeli's E-wave solution

is excellent. However, Figure 10b shows a significant discrepancy between the H-wave solutions.

Comparison of Figure 10b with Figure 6a reveals that this discrepancy is caused by the neglect in

Michaeli's solution of the diffraction of the H-wave, leading-edge nonuniform current at the trailing

edge. That is, Michaeli's high-frequency solution does not include the trailing edge factor in Eq. (35).

and thus, shows poor agreement with the exact solution of the strip illuminated by an H-polarized

plane wave.

Uflmtsev's first order H-wave back scatter radar cross section from his 1969 paper 1 5 is compareu

to the exact solution in Figure 11. Except in the vicinity of the main lobe, this first order H-wave

solution which is more accurate (according to Ufimtsev1 5 ) than his solution in Reference 11 used by

Coleman et a18 , shows poor agreement with the exact H-wave solution.

14 Mlchael!, A (8 OSA P lsed f*^.- phsical theory of uaI'action solutiuo for electromagnetic

scattering by strips and 901 dihedrals, Radio Science 19:609-616.

15. Ufimtsev, P. Ya. (1969) Asymptotic investigation of the problem of diffraction on a strip, Radio
Engineering and Electronic Physics 14:1014-1025.
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To show how the accuracy of the approximations derived in Sections 2.1 through 2.5 depends on

the strip width, In Figures 12a and b, 13a and b, and 14a and b. we show the TM and TE back scatter,

specular scatter, and side scatter cross section plots obtained for a strip of width s/X = 3/2n = 0.48.
Although the approximations are not quite as accurate as they are for the strip of width s/X = 30/2g,

nevertheless the approximate cross sections differ at most by only 1.5 dB from the exact cross

sections.

3. NONUNIFORM (PTD) INCREMENTAL DIFFRACTION COEFFICIENTS FOR THE
TRUNCATED HALF-PLANE

In this section we obtain the TM and TE nonuniform or PTD IDC's for the the leading and
trailing edges of a truncated half-plane. The TM nonuniform IDC for either the leadirng or trailing
edge of a truncated half-plane is obtained by substituting EIt Tu M in Eq. (24b) of Reference 3 with

E ou0l  given by the coefficient of 08 in Eq. (10a). Thus,

-dzImiz 2kr1  o sin 01 1
anu ) r1 ->~dzE~ -S 24 2 sin 2 001 cos 00, + cos a

.e-, 14 v 2 (1- cos a)
1 1 - cos -1/2 FO(ks sin 00,I 1.- cos at)

-2 COS 00 e- ks sin 001 (cos 001 + cos a) F(2ks sin 001 cos2  0

001o~.L[ -eks sin 60 jua , + rn s aill~ -

- 2 O i (40)

where

sin 01 cos cI + cot W, (cos 01 + cos 0o)cos a = (41)
sin 0o

with W, the angle between the axis of the incremental strip and the positive local z-axis. We have

inserted the subscript "' in Eqs. (40) and (41) to indicate that the subscripted quantities are defined

with reference to a local coordinate system with origin at the incremental length dzl'.

The TE nonuniform IDC for the leading edge of a truncated half-plane is obtained by substituting

Heflua E ) and Honu(TE) in Eq. (17) of Reference 3 followed by Eq. (18) of Reference 3. with Honu(iE) and

Ho nu (T E) given by Eq. (18a) and Eq. (3 1a) respectively. Thus,
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-nutrE)elkr 2

-- nu(TE) rl;o -dz/ sign (n - 0 1 )ZoHiz 4xr sin 0o

{ [ F e-i/4 [eikssin 001 (cs4 +acosa) F( ks sin 00, cos2n e)

2
Ilcoal/ 2 FO(ks sin 00,I1 -cos aI

+i ...e ks sn 00 oz+G(cos 0 + cos o Cs01+ Cos acot 00,sin 01 (4) 1s) C0S + cos + (42)

in/4 ks sil 00, (co kon +

+ si c a) F ] co sin 0 0 C 0

ssin 00, (cos 00 +.,co, os a) A

with cos a given by Eq. (41). The TE nonuniform IDC for the traihg, ,dge 'of ,,r.. a -ated naif-plane is
obtained by multiplying the edge expression in Eq. (42) by the factor given in Eq. (35) or (37), as
explained previously in Section 2.5.

4. SCATTERING OF A PLANE WAVE BY A PERFECTLY CONDUCTING DISK

In this section we apply the IDC's derived in Section 3 to calculate the far fields scattered from a
perfectly electrically conducting disk of radius a. The geometFy is shown in Figure 15. The primary

source is a plane wave whose direction of propagation lies in the xz-plane and makes an angle of (Oi
with the z-axis. The observation direction is given in spherical polar coordinates (R, 0, 4). Two

polarizations of the incident plane wave are considered:
1) perpendicular (TE) or

EInc = Ei0e01r11 a + (43a)

Hit = YoEeik• r (cos 0 x -nsin 01 (43b)
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and
2) parallel (TM) or

Inc= EI ei r (co O -sin of Z) ,(44a)

l-1~ = -YoEIe1 k- r A 4b

with

- A A A

kkr I-k (sin O X + COfZ) ,(45)

and

- A A A

r =XX + yy + ZZ. (46)

The far field scattered from the disk is obtained by adding the Integrals of the strip nonuniform IDC's
around the edge of the disk to the PO far field. The nonuniform high-frequency solution prestrnted
here for scattering from the disk remains valid for all angles of incidence and scattering. and thus, is
distinguished from the previous high-frequency solutions that concentrated on back scattering. 16' 17

4.1 Physical Optics Field

The PO scattered field Is derived In Reference 18 and we give only the results here. For
perpendicular polarization of the incident plane wave

S"()= tia e J 1 ( S coOi(cos 0sinp 0cs4 (47)

while for parallel polarization

iEaeikR J1 (ka3) cos 01(cos 0 COS OA _Sin OA) 48

with

P= [sin2 0 sin2 4) + (sin 0f + sin 0 OS ))2] 1/2 (49)

and J1I the Bessel function of order one.

16 DeVore, R.. Hodge, D.B., and Kouyoumjian, R.C. (1971) Backscatterlng cross sections of circular
disks for arbitrary incidence, J. Applied Physics 42:3075-3083.

17 Arland, D.P.. Balanis, C.., and Brumley, S.A. (1987) Higher order difiractions from a
circular disk, IEEE Trans. Antennas PropagaL. AP-35: 1436-1444.

113. Trott, K. (1988) The Disk: A Comparison of Electromagnetic Scattering Solutions and Its Use as
a Calibration Standard foi Bistatic RCS Measurements. RADC-TR-88-16, ADA200327.
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4.2 Transformation of the Local Coordinates of the Strip IDC's to the Global

Coordinate System of the Disk

The correction to the PO electric far field of the disk is obtained as indicated above by integrating

the nonuniform strip IDC's, Eqs. (40) and (42), around the edge of the disk. Since all quantities in

Eqs. (40) and (42) are defined with respect to a local coordinate system with origin at the differential

element of the disk edge. it is first necessary to transform Eqs. (40) and (42) to the global coordinate

system of Figure 15. It is also necessary to define the local coordinate system. Since we are modelling

the edge locally by the truncated half-plane defined as in Figure 2, we want the local x-axis to be in the
plane of the disk, normal to the edge, and directed inward from the edge: the local y-axis to be the

normal to the disk at the edge directed toward the half-space from which the illuminating plane wave

is incident: and the local z-axis to be tangent to the edge of the disk. Hence,

A A, A ,A
x =-p :-cos x -sin y. (50a)

A A (50b)

and

A A A AinA A
:Z1xXyI x -sin y, (5oc)

where we use primes to denote the point of integration.

We now systematically express the locally defined quantities of Eqs. (40) and (42) in the global
A, A

coordinate system. Starting with 001, the angle between the local unit z-vector, 0', and the vector r

given by Eq. (45),

A A
CoS 00, = r1 .zI

=-sin 0, sin €'(51a)

and

sin 00, = + (1 - sin2 0, sin 2 0') 1 / 2  (51b)

where the positive root must be taken since 0 5 001 < n.

Next. since 01, is the angle between X, and the projection of r, on the x, yl -plane,

A AcOS 00,= r .x, /sin 00,

= -sin 01 cos 0'/sin 00, (52a)

and

A A
sin o1 = r i "y /sin 00,

= cos 01/sin 00 (52b)

from which
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S sin OcOS 4)1/2
Co10 sin 0o, (53)

22 )

where the positive root must be taken since for a plane wave incident from the upper half-space, z > 0.
0: <0 5o n.

Proceeding to 01, the angle between Z, and the ray from the edge point to the far-field observation

point,

A A A, A

cos 01 z1 ,ri= *R

=-sin 0 sin(O'-4) (54a)

and

sin 01 =+[1- sin2 0 sin214'/)] 2  (54b)

where the positive root must be taken since 0 < 01: 7T. The cosine and sine of 4j are given by

A A A A
cos01 =r 1 "x,/sin01 =R .x,/sin 01

- -sin 0 cos(4' - 0)/sin 01 (55a)

and

sn =A A / 0=A Asin 0= r IyI/Sin O =R.y I/sin 01

= cos 0/sin 01 . (55b)

The unit vector 01 is transformed to global coordinates by starting with

A A A A
01 "cos O cos4/xj + cos O sin 4ly - sin 01 z,

A A A
substituting global Cartesian component expressions for xI y I and Z and simplifying

trigonometrically, thereby obtaining
A 0,

0= (-cos0 l cos 4 coso' +sin 01 sin )

- (cos 01 cos 01 sin 4' + sin 0i cOS '

A+ cos 01 sin 41 Z (56)

with cos 01 , sin 01 , cos 41, and sin 01 , given by Eqs. (54a), (54b), (55a), and (55b) respectively. A similar

procedure gives

j - siunjcos' x+siui4sin y+cos z .(57)

When the IDC's, Eqs. (40) and (42). are integrated arou-nd the edge of the disk to obtain the

nonuniform current correction to the PO far field, it is the 0- and 4- components of the electric far field
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that are required (the radial component, is of course, zero). Hence, it is desirable to have expressions

for the 0- and 4- components of 0 1 and $ . Letting

A A A A A A
a=oT"0, 0=O 1 .4), 0=4)"., v= 0 .4, (58)

we have

a = a cos 0 cos + b cos 0 sin 0 -c sin 0, (59a)

= -a sin 0 + b cos 4. (59b)

1t= d cos 0 cos 0 + e cos 0 sin 0 -f sin0, (59c)

v = -d siu , e rd , 6. (598)

A A A
where a, b, and c are the coefficients of x, y, and z, respectively, in Eq. (56) and d, e, and f are the

A A A

coefficients of x, y. and z in Eq. (57). Substituting explicit expressions for a, b, and c, and d, e, and f
from Eqs (56) and (57) in (59) followed by substitution of the expressions Eqs. (54) and (55) for cob 01.

sin 01 , cos 01 , and sin (,h yields after algebraic and trigonometric simplification

cos 0 sin u
=1-- sin2 0 sin2 u) 1 / 2  (60a)

cos u(1 - sin2 0 sin2 u) 1 / 2  
(60b)

cos u
(- sin2 0 sn 2 u) 1 / 2  (60c)

cos 0 sin u
v = (1 - sin 2 0 sin 2 U) 1 / 2  (60d)

where

u=)'-.4. (61)

Next, proceeding to eikr 1/ri and replacing r1 by r

1Z A

eikr; eikr eik(R- ?'. R)- r ->-o (62)
r, r R

It is then simple to find that

A, A
r R= asin0cos(' -4). (63)

'rhe differential length dz' is given by

dz', = ad,' (64)

Finally, the components of the illuminating field in the local z-direction, Ejj and 1-1iz, , are given by
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Eiz, E10,, (65a)

- I =H , ,' *(65b)

where, from Eqs. (43) and (44),

EiO, = Etcos 4' elk R (66a)

I-I% = -YoEicos 0 sin 4' et ki ' (66b)

for perpendicular polarization of the plane wave, and

E1o,= -Ecos 0i sin ' el.F, (67a)

HIo , = -YoEcos 0' eikl •  , (67b)

for parallel polarization of the incident plane wave.

4.3 Choice of Incremental Strips

In integrating the nonuniform current IDC's around the edge of the disk to obtain the correction
to the PO far field, a choice must be made of the orientation of the incremental strips, since the strips

can be chosen to cut across the disk in any direction. Thus, for example, the strips can be taken
straight across the disk parallel to the x-axls, the projection of the direction vector of the incident

plane wave on the disk, or they can be chosen to lie in the directions of the diffracted rays on the disk,

or they can be chosen to be diameters, normal to the edge at the points of integration. In general, if the

nonuniform current dies away rapidly from the edge, the choice of the orientation of the incremental

strips plays little role in determining the nonuniform current field. However, if the nonuniform

current does not decrease rapidly away from the edge as it does not here, for parallel polarization close

to grazing incidence, the choice of the incremental strips can significantly affect the calculated

nonuniform current field.

In the calculations performed, two choices of incremental strips were made: 1) straight across

the disk parallel to the x-axis; and 2) in the directions of the diffracted rays on the disk. (The choice of

diameter incremental strips was ruled out because it would lead to serious overlapping, and hence
overweighting. of the nonuniform currents close to the center of the disk.) The choice of the

incremental strip orientations enters into the calculations analytically through 1) the value of s, the

width of the strip, in the IDC's given by Eqs. (40) and (42); and 2) cot y, in Eq. (41) where y, is the angle

between the axis of the incremental strip and the positive local z-axis. The derivation of these

quantities is given in Appendix B and we state the results here. For incremental strips taken straight

across the disk parallel to the x-axis

s = 2a cos 2 4', (68)

cot V = tan 4' , (69)
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while for strips taken along the diffracted rays on the disk

s = 2a(1 - sin 2 01 sin2 0') , (70)

cot xV1 = -cos 00, /sin 0 0, . (71)

with cos 00, and sin 00, given by Eq. (51). For both choices, the parameter L in the factors, (37) or (38),

used to multiply the TE trailing edge field. Is taken as the value for strips straight across the disk; that

is.

L- ^a IC, .. (72)

because the use of (37) as a simple multiplicative factor applied to the incident field assumes that the

direction of propagation of the field impinging upon the trailing edge is in the direction of the incident

field. Near grazing, where the multiplicative factor, (37), differs significantly from unity, all the

diffracted rays approach the direction straight across the disk and thus, the value of L in Eq. (72) is
valid for the diffracted ray directions as well as the direction across the disk. Away from grazing,
where the diffracted rays do not all lie in the direction across the disk, the multiplicative factor

approaches unity, and thus its effect becomes Insignificant for large disks.

4.4 Calculations of the Bistatic Radar Cross Section of a Disk

In this section we show the results of calculations of the bistatic section of a perfectly conducting

disk. The bistatic cross section, a(0.0), is defined by Eq. (1.30) of Reference 12:

(0,) ="Rn 4nR 2 IsJ2 (73)

where E s Is the scattered electric field at the observation point (RO04). In our calculations we

normalize the bistatic cross section by dividing It by the square of the wavelength. We present plots of

the bistatic cross section for perpendicular and parallel polarization of the incident plane wave, and
for both co- and cross-polarized scattered fields defined according to Ludwig's third definition i 9 as

Eco = E0 cos 0 + E, sin 0 , (74a)

Ecr = E0cos 0 - E, sin . (74b)

Cross sections were calculated for the two choices of incremental strip orientations discussed in the

previous section: strips taken straight across the disk parallel to the x-axls, the projection of the

direction vector of the incident plane wave on the disk; and strips taken in the direction of the

diffracted rays on the disk. The approximate cross sections obtained by adding the integrals of the
nonuniform current IDC's around the edge of the disk to the PO fields are compared with the exact

19. Ludwig, A.C. (1973) The definition of cross polarization, IEEE Trans. Antennas Propagat.
AP-21:116-119.
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cross sections obtained from an elgenfunction solution. 2 0 A modification of a computer code
implementation 2 0 of the elgenfunction solution, made by Dominek 21 to allow for the use of larger ka
values, was used to calculate the exact cross sections.

In Figures 16a and b. we show the back scatter (0 = 01, 4) = 0 = ) cross section patterns for a disk of

size ka = 15 for perpendicular polarization of the Incident plane wave, with the incremental strips

taken straight across the disk and in the direction of the diffracted rays, respectively. Figures 17a and
b show tie corresponding back scatter patterns for parallel polarization of the incident plane wave.

Both strip orientations yield similar satisfactory approximations over tht entire range of 0.
In Figures 18a and b we show the specular scatter (0 = 01, 4) = n) cross sectiorns for perpendicular

polarization of the incident plane wave, with the strips oriented parallel to the x-1xi- rod %' tih.

dh,.ctki-I Vk" 1h.. t= U 11,1.d, iays, &.jt .Lviy. Fiigures 19a and b show the corresponding plots for

parallel incident plane wave polarization. Both choices of incremental strips yield excellent
approximations over the entire range of 0 that could be used as an accurate calibration standard for

bistatic RCS measurements.
The side scatter (observation direction normal to the incidence direction: 0 = n/2 - 01, = i) cross

section patterns for perpendicular polarization of the incident plane wave, with the incremental
strips parallel to the x-axis and in the directions of the diffracted rays, are shown in Figures 20a and b,

respectively. The corresponding patterns for parallel incident plane wave polarization are shown in

Figures 2 1a and b. The patterns obtained with the strips taken parallel to the x-axis give a slightly

better approximation to the exact cross sections than do the patterns obtained with the strips in the

direction of the diffracted rays.

A significant feature seen in Figures 17, 19, and 21 is that the scattered fields of the high-
frequency solution approach zero like the exact scattered fields as the parallel polarized plane wave

approaches grazing incidence. This high accuracy near grazing for the parallel polarized plane wave

further confirms the validity of the trailing edge factor in (37).

In Figures 22 - 25 we show the cut through the cross section pattern in the plane defined by 0) = 45'

and 4) = 2250, for a plane wave incident on the disk at angle of 01 = 45' . In these plots we have let

-By = 90"- 0 for = 45°, 900 > 0 0 O.and y = 900 + 0 for 4=225' , 0:< 0: <90'. We show both the co- and cross-

polarization patterns in this cut. (For the back, specular, and side scatter patterns, the cross-polarized

field equals zero.) Figures 22a and b display the co-polarized pattern for perpendicular polarization of
the incident plane wave, with the incremental strips parallel to the x-axis, and in the diffracted ray

directions respectively. Figures 23a and b show the corresponding cross-polarized patterns. In
Figures 24a and b we show the co-polarized patterns for parallel polarization of the incident plane

wave, and in Figures 25a and b the corresponding cross-polarized patterns are shown.
We see from Figures 22 - 25 that again there is not a large difference in accuracy between the

high-frequency solution calculated from strips parallel to the x-axis and in the directions of the

diffracted rays. The larger discrepancy between the high-frequency solution and the exact solution for

20- Hodalge, D.B. (1979) The Calculation r. , tr, S..tng I- a u-clllW I...... L '-., ,'" O State

University ElectroScience Laboratory Report 710816-2.
21. Dominek, A.K. (1988) Personal Communication, Ohio State University ElectroScience

Laboratory.
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these 450 patterns are caused by sign.:icant secondary diffraction between the leading and trailing

edges that Is not accurately accounted for away from grazing incident by the incremental strip
approximation for the current on this disk of fairly small radius a = 15/2n X - 2.4X. This discrepancy

diminishes for electrically larger disks. (See Appendix C.)
As with the strip, it is of interest to see the limitations -.j PO approximation for the disk

bistatic cross sections. In Figures 26a and b, 27a and b, and 28a and b, we compare the PO (--) and

exact (--) back scatter, specular scatter, and side scatter cross section patterns for perpendicular

and parallel polarization of the illuminating plane wave. Figures 29a and b compare the co-and

cross-polarized PO and exact patterns In the plane defined by p = 450 and V = 225' for a perpendicular

polarized plane wave incident on the disk at an angle of 01 = 45' . Figures 30a and b show the

corresponding patterns for parallel polarlation of the incident plane wave. It is apparent from these

figures that the PO approximation does not, in general, give an accurate representation of the bistatic

cross section patterns. especially in the vicinity of pattern minima. This, of course, serves to

emphasize the importance of accounting for the nonuniform current field in calculating radar cross

sections of objects with edge discontinuiues.

To sec how the accuracy of our approximation depends on the disk size. in Figures 31a and b, 32a

and b, and 33a and b, we show the perpendicular and parallel polarization back scatter, specular

scatter, and side scatter patterns for a disk of size ka = 1.5. For these patterns the incremental strips
have been taken parallel to th x -axis. Although there are differences of a few dB between the exact

and IDC solutions over much of the range of 0. the pattern shapes are surprisingly accurate for this

.mall disk of diameter less than one-half a wavelength.
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Appendix A: Derivation of an Integral
of the Fresnel Integral

In this Appendix we obtain a cio .cd-form expression- for the following integral of the Fresnel
integral:

x
zF(u)etau du .x > 0. (A-i1)

-0

where-F(u) is the Fresnel integral defined by

U

1 f elt
-I u dt (A-2)

To-integrate (A-i1), begin by integrating by parts to obtain

X i a +lI)u dj
JF(u)e iau duj- eiax F(x)- e d (A-3)

We now consider the following three cases: i0 a +1>0; ii) a + 1<0:and ll) a +!= 0.

0) a-+I> 0

For a+ 1 >O0let t=(a + i)u. Then from Eq. (A-3)
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x [(a + l)x 1i
1 1 1it et

-F-(u)e'aU du a" cXF(x) (a + 1)1/2 f e0 dt
0 I -

a eLaXF(x) - (a + 1)1/2 F((a + 1)x) . (A-4)

iI) a+1<0

Lett= I a + 1 lu. Then from Eq. (A-3)

x [(a + 1) x
f F(u)elau du 1'a" elaxFx) 1/ 2  1 f 'dt

0 ia l~a +11 2 -r F
0 0

= elaxF(X) + 1 Ix) (A-5)

iif) a+ 1=0ora=-1

From Eq. (A-3)

x- x1 x 1 1

F(u)e-iudu= [ e- F(x) - =du

0

=I e-iXF(x - W (A-6)

Thus,

1l[elaxF(x)-a1)i F((a + 1)x), a+ 1>0

x

jF(u)ela1du= i-L[elaxF(x)- Ia+11112 F(a+ lx)] +1<0 (A-7)
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Appendix B: Derivation of Incremental
Strip Parameters

In this Appendix we derive expressions for-the width, s, of the incremental strip in the IDC's
given by-Eqs. (40) and (42), and for cot *q in Eq. (41) where xiy is the angle between the axis of the
incremental strip and the positive local z-direction. Both yuantities depend on the choice-of

orientation of the incremental strips. We consider two choices: 1) incremental strips chosen parallel
to the x-axis (the projection on the plane of the disk of the direction vector of the incident plane wave);
and 2) incremental strips chosen in the direction-of the diffracted rays on the disk.

BI. Incremental Strips Parallel to the X-Axis

Referring to Figure B la, we consider an incremental strip taken-parallel to the x-axis at the point
on the edge of the disk at 4', -it < ' < 7r. Since the local unit z-vector, Zl, is equal to $', [(Eq. (50c)]. 4l is
the angle between the chord parallel to the x-axis at 4' and the tangent to the disk at 4'. From
elementary geometric considerations

- .- < < -,

1 -£- -m < 21

- - 7E- < - -

so that

cot y, tan 4'. (B2)
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L

S

-Figure Bla. Geometry of Disk with Figure Bib. Corresponding
Incremental Strips Parallel to the x-Axis Strip Geometry

Since the-disk is modelled locally by a strip whose edges-are parallel to the local-z-axis (see Figure
Bib), the-strip width s in the IDC's Eqs. (40) and (42) Is related to the chord length-L in Figure Bla by

s =-L sin iV,. MY3

Hence, with Eq. (B 1)

s =L Icos~' (B4)-

Et

L=2a Icosc1' (B5)-

so that

s= 2a cos2  (B6)-

B2. Incremental Strips in-the Direction of-the Diffracted Rays

Let
A A AB7
rd a xX + rj(B)

with

= 1-p (B8)-
A

be the diffracted ray iinit vector-on-the disk iit the point ()e, yV) (a cos '.a si-4'). The angle. that rd
A,

makes with -the local unit 'i-vector, 4is given by

1Y 7 - 001 (139)
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wvhere 001 Is the angle between the local z-axis and the vector in the direction from which the
illuminating plane wave Is Incident. Then from Eqs. (51a,b)

cos y - cos 00, = sin 01 sin 4),(131a)

sin yj = sin- 00, = (1 - sin2 0j sIn2 0)1)1/2, (B31b)

so -that

To determine the length of the chord, L. made by the diffracted ray on the disk we first need
expressions for the direction cosines a and f3in-Eq. (B37).
Since

A A

rd.4) =cosW{i (B 12)

it-follows from Eq. (1310a) that

-a sin 4)' + f3 cos4) sin 01 sir.4) (1313)

or

=tan 4'(ax + sin 0,) .(1314)

Substituting Eq. (B314) into (B38), solving the resulting quadratic equation for a., and Substituting a In
Eq. (B314) gives

ax -sin 0 sin2  COS± cs4(1 -stn
2 01 sin2 )1) 1/2 ,(B315a)

=sin 4'sin 01 cos 4)±(1 -sn sinin ))/] (B315b)

Now let

x a cos4) + ccu , (1316a)

y a sin4) + Pu, (B16b)

be-the parametric representation- of points on the diffracted ray. -Substituting for a and ~3from Eq.
(13i5) in Eq. (B 16), setting

X2+ y2 = a 2  (1317)

and- letting L be the resulting solution for u, yields

1,= -2a .±(1l - sin 2 O~sin 2 01) 1 / 2  (1318)

where the ± corresponds to that in Eq. (B315). It follows that the minus sign miust be chosen in-
Eq.-(B 15) and

-1 =2aD - sn 2 0 1 sln2 0 /2  (1319)

Hcnc, using Eqs.-'(23O) and (13l0b).

s= 2a (1- sIn 2 01 sIn 24 . (1320)
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Appendix C: Conditions for Incremental Current
Strips to Accurately Predict Fields
Diffracted from the Trailing Edge

In Section 2.5 we modified the TE fields incident upon the trailing edge of a truncated half-plane
to-account for the nonuniform T E current that emanates from the leading edge and diffracts at the
trailing edge. (The nonuniform TM currents decay rapidly away from-the leading edge for all angles of
incidence, and thus, prodLce negligible diffracted fields at the trailing edge of a truncated half-plane a
few- or more wavelengths ac, oss.) In-applying the TE modification derived in Section 2.5 to the disk,
we assume that the incremental nonuniform current strips mahtain a constant width across the
disk. Although this assumption is valid for the infinitely long straight edges of a truncated half-
plane, it may not yield an accurate representation of the actual nonuniform currents beyond a certain
distance from the leading edge of a finite dimensional-flat plate such as the disk. The-purpose of this
Appendix is to establish the distance from the leading edge of a flat plate that the nonuniform current
predicted by incremental half-plane current strips remains a good approximation to the actual
current.

When the incident plane-wave is grazing, the magnitude of the nonuniform TE current remains
constant across the-flat plate and the nonuniform incremental-strip current agrees exactly with the
ac'ual current. For an incident plane-wave far from-grazing, the actual TE nonuniform current,
Kaetual, emanating from the leading edge of the plate can be evaluated approximately by a stationary
phase evaluation of the diffraction integral. This evaluation leads to the usual geometric factor in the
edge-diffracted raysC I; specifically

C1. Kouyoumjian, R.G. (1975) The-geometrical theory of diffraction and its application, Chapter 6 in
Vol. 3 of Topics in Applied Physics (Numerical-and Asymptotic Techniques In
Electromagnetics), R. Mittra, Ed., New York: Springer Verlag.
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K nUT) u A 9 ekd

actual A d(q + d) (Cl)

where d is the distance from the leading edge (diffraction point) along the diffracted ray to the
observation point in the plate, and q is the focal length along this diffracted ray measured from the
leading edge. The focal length is determined by the curvature of the leading edge at the diffraction
point and the direction of incidence of the illuminating plane wave. The constant A is a complex
amplitude proportional to the amplitude of the incident plane wave. The derivation of Eq. (Cl)
assumes that the distance d from the leading edge to the observation point is greater than about a
wavelength, and that the incident plane-wave is sufficiently far from grazing for the nonuniform TE
current-to decay as 1'hFd for X < d << q.

The nonuniform TE current, Knu (T E}, predicted by incremental half-plane current stripsIncr

of constant width, taken along the directions of the diffracted rays through the trailing edge points, is
given approximately by

K = A \-eikd (C2)incr dC2

for d .Xand the incident plane-wave far from grazing. The 1 /Fd factor can be derived by subtracting
the PO current from the total current in Eq. (32a) and then letting 2k sin 00 cos 2 (0o/ 2 ) be much larger

than -unity.
Comparing Eq. (C2) with Eq. (C 1), we see that the nonuniform TE current predicted by the

incremental half-plane strips-of current is a reasonable approximation to the actual TE current when
Id/q > 1/4; that is, when the distance from the leading edge along the diffracted ray is less than about
one-quarter of the focal length. Thus, secondary diffraction at the trailing edge of the nonuniform
current emanating from the leading edge will be accurately determined-by the half-plane incremental
current strips when the distance along the diffracted ray is less than about one-quarter of the-focal
length. -Of course, for a plane wave incident along-a direction far from grazing, the secondary
diffraction of the nonuniform current will become negligible with increasing plate size. Moreover, as
mentioned above, near grazing incidence the incremental nonuniform current closely approximates
the actual current across the-plate, and secondary diffraction is accurately predicted. Interestingly,
near grazing incidence the focal length of the diffracted rays approaches infinity. Hence, although the
expressions for current in Eqs. (Cl) and (C2) are not valid close to grazing, they correctly predict
equality at grazing incidence between the actual and incremental half-plane strip nonuniform
current.
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